9 research outputs found

    Possibility of T-violating P-conserving magnetism and its contribution to the T-odd P-even neutron-nucleus forward elastic scattering amplitude

    Full text link
    T-violating P-even magnetism is considered. The magnetism arises from the T-violating P-conserving vertex of a spin 1/2 particle interaction with the electromagnetic field. The vertex varnishes for a particle on the mass shell. Considering the particle interaction with a point electric charge we have obtained the T-violating P-even spin dependent potential which is inversely proportional to the cubed distance from the charge. The matrix element of this potential is zero for particle states on the mass shell, nevertheless, the potential contributes to the T-odd P-even neutron forward elastic scattering amplitude by a deformed nucleus with spin S>1/2. The contribution arises if we take into account incident neutron plane wave distortion by the strong neutron interaction with the nucleus.Comment: LaTeX, 7 page

    Vacuum polarization instead of "dark matter" in a galaxy

    Full text link
    We considered a vacuum polarization inside a galaxy in the eikonal approximation and found that two possible types of polarization exist. The first type is described by the equation of state p=ρ/3p=\rho/3, similar to radiation. Using the conformally-unimodular metric allows constructing a nonsingular solution for this vacuum ``substance'', if a compact astrophysical object exists in the galaxy's center. As a result, a ``dark'' galactical halo appears that increases the rotation velocity of a test particle as a function of the distance from a galactic center. The second type of vacuum polarization has a more complicated equation of state. As a static physical effect, it produces renormalization of the gravitational constant, thus, causing no static halo. However, a nonstationary polarization of the second type, resulting from an exponential increase (or decrease) of the galactic nuclei mass with time in some hypothetical time-dependent process, produces a gravitational potential looking like a dark matter halo.Comment: 16 pages, 6 figure

    Rotational Curves of the Milky Way Galaxy and Andromeda Galaxy in Light of Vacuum Polarization around Eicheon

    Full text link
    Eicheon properties are discussed. It is shown that the eicheon surface allows setting a boundary condition for the vacuum polarization and obtaining a solution describing the dark matter tail in the Milky Way Galaxy. That is, the dark matter in the Milky Way Galaxy is explained as the F-type of vacuum polarization, which could be treated as dark radiation. The model presented is spherically symmetric, but a surface density of a baryonic galaxy disk is taken into account approximately by smearing the disk over a sphere. This allows the reproduction of the large distance shape of the Milky Way Galaxy rotational curve. Andromeda Galaxy's rotational curve is also discussed.Comment: This paper is an extended version of "Dark Matter in the Milky Way Galaxy as the F-Type of Vacuum Polarization.'' from the Proceedings of the 2nd Electronic Conference on Universe, 16 February--2 March 202

    The Quasicrystal Model as a Framework for Order to Disorder Transitions in 2D Systems

    No full text
    Order to disorder transitions are important for 2D objects such as oxide films with a cellular porous structure, honeycomb, graphene, and Bénard cells in liquid and artificial systems consisting of colloid particles on a plane. For instance, solid films of the porous alumina represent an almost regular quasicrystal structure (perfect aperiodic quasicrystals discovered in 1991 is not implied here). We show that, in this case, the radial distribution function is well described by the quasicrystal model, i.e., the smeared hexagonal lattice of the two-dimensional ideal crystal by inserting a certain amount of defects into the lattice. Another example is a system of hard disks in a plane, which illustrates the order to disorder transitions. It is shown that the coincidence with the distribution function, obtained by the solution of the Percus-Yevick equation, is achieved by the smoothing of the square lattice and injecting the defects of the vacancy type into it. However, a better approximation is reached when the lattice is a result of a mixture of the smoothened square and hexagonal lattices. Impurity of the hexagonal lattice is considerable at short distances. Dependences of the lattices constants, smoothing widths, and impurity on the filling parameter are found. Transition to the order occurs upon an increasing of the hexagonal lattice contribution and decreasing of smearing

    Smeared Lattice Model as a Framework for Order to Disorder Transitions in 2D Systems

    No full text
    Order to disorder transitions are important for two-dimensional (2D) objects such as oxide films with cellular porous structure, honeycomb, graphene, Bénard cells in liquid, and artificial systems consisting of colloid particles on a plane. For instance, solid films of porous alumina represent almost regular crystalline structure. We show that in this case, the radial distribution function is well described by the smeared hexagonal lattice of the two-dimensional ideal crystal by inserting some amount of defects into the lattice.Another example is a system of hard disks in a plane, which illustrates order to disorder transitions. It is shown that the coincidence with the distribution function obtained by the solution of the Percus–Yevick equation is achieved by the smoothing of the square lattice and injecting the defects of the vacancy type into it. However, better approximation is reached when the lattice is a result of a mixture of the smoothed square and hexagonal lattices. Impurity of the hexagonal lattice is considerable at short distances. Dependencies of the lattice constants, smoothing widths, and contributions of the different type of the lattices on the filling parameter are found. The transition to order looks to be an increase of the hexagonal lattice fraction in the superposition of hexagonal and square lattices and a decrease of their smearing

    Dark Matter in the Milky Way as the F-Type of Vacuum Polarization

    No full text
    Dark matter in the Milky Way is explained by the F-type of vacuum polarization, which could represent dark radiation. A nonsingular solution for dark radiation exists in the presence of eicheon (i.e., black hole in old terminology) in the galaxy’s center. The model is spherically symmetric, but an approximate surface density of a baryonic galaxy disk is taken into account by smearing the disk over a sphere

    Dark Matter in the Milky Way as the F-Type of Vacuum Polarization

    No full text
    Dark matter in the Milky Way is explained by the F-type of vacuum polarization, which could represent dark radiation. A nonsingular solution for dark radiation exists in the presence of eicheon (i.e., black hole in old terminology) in the galaxy’s center. The model is spherically symmetric, but an approximate surface density of a baryonic galaxy disk is taken into account by smearing the disk over a sphere
    corecore